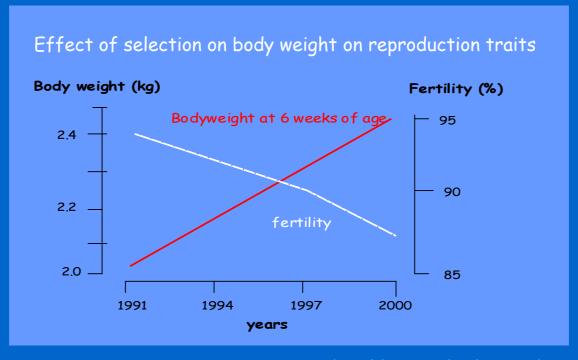
ANALYSIS OF FERTILITY IN BROILER BREEDER FLOCKS - MALE SIDE APPROACHES

Judit Barna, Barbara Végi, Éva Váradi, Zsuzsa Szőke and Krisztina Liptói



Research Institute for Animal Breeding and Nutrition

Gödöllő 2007

Introduction

- Problem with fertility decline in broiler breeders
- The main reason of it has genetic origin:

(Reddy & Sadjadi, 1990)

Introduction

- Presumptions of physiological reasons of reduced fertility
- > From the male side
 - Presumed decrease in sperm quality by ageing
 - Decrease in mating activity by ageing
- > From the female side
 - Faster release of spermatozoa from the SSTs by ageing (Brillard, 1993)

Aim of the study

to clarify the role of males'

- number (sex ratio)
- age (spiking)
- exchange between flocks

on the fertility rate of broiler breeders in the second half of the reproduction cycle.

- Animals:
- · ROSS 308 broiler breeders, 26 weeks of age
- Separated floor pens/ 7 flocks 80 ♀ and 8 ♂/flock
- · Feeding and keeping according to the management guide

Experimental design

Experimental flocks		1	2	3	4	5	6	7
Treatments		100 % spiking	Control Decreasing of male number (management manual)	Complete exchange of cockerels	50 % spiking	Increasing of male number	Complete exchange of cockerels	Maintaining of male number
Sex ratio at the age of 26 weeks		80 ♀ + 8 ♂						
Changes in sex ratios	36 weeks of age	- 1 &	- 1♂	- 1 ♂	- 1 3	+ 1 💍	- 1 ♂	-
	40 weeks of age	- 1 ♂	- 1 ð	- 1 3	- 1 ♂	+1 👌	- 1 ♂	-
	44 weeks of age	- 1 ♂	- 1 8	- 1♂	- 1 ♂	+1 👌	-1 ♂	-
	49 weeks of age	-	-	-	-	+1 👌	-	-
Spiking (exchange of old cockerels for young ones)	44 weeks of age	100 %			50 %			
Exchange of cockerels	44 weeks of age			×			×	
Final sex ratio at the age of 49 weeks		80 ♀ + 5	<i>80</i> ♀+ <i>5</i> ♂	<i>80</i> ♀ + <i>5</i> ♂	80 ♀ + 5	<i>80</i> ♀ <i>+ 13</i> ♂	80♀+5♂	80 ♀ + 8 ♂

Fertility determinations

Candling fertility

in freshly laid eggs

in incubated eggs

Kosin test

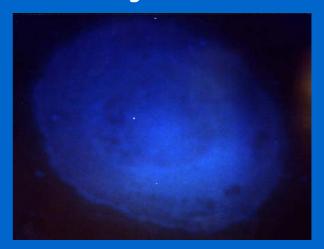
Perivitelline sperm penetration assay

Propidium iodide staining

Naked eyes

Light microscope

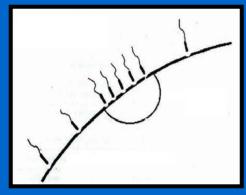
Fluorescent microscope

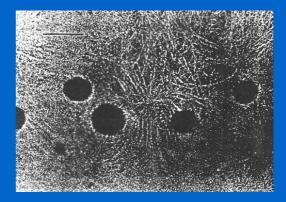

- Kosin test
- Reliability 55 90 %
- Poor information value

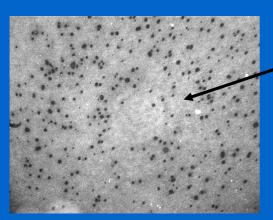
Infertile germinal disc

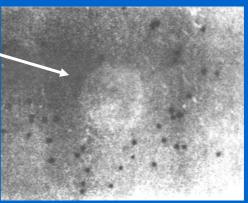
Fertile germinal disc


- · Perivitelline sperm penetration assay
- Precise analysis of fertility
- Reliability 100 %
- 20-30 eggs/flock weekly






Perivitelline sperm penetration assay


Schematic figure of sperm penetration through the inner perivitelline membrane

Electron microscopic view of the sperm penetration

GD area

Light microscopic view of more and less holes with dark background

- Determination of 'true' fertility
- In incubated eggs selected as 'clears' during candling
- Propidium iodide staining

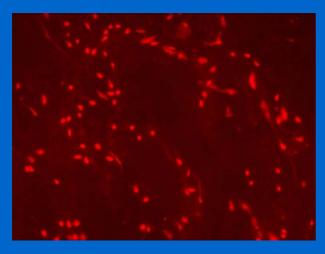
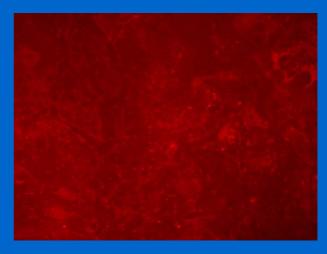
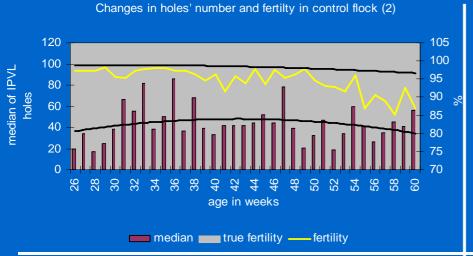
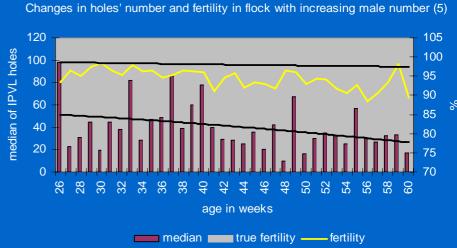
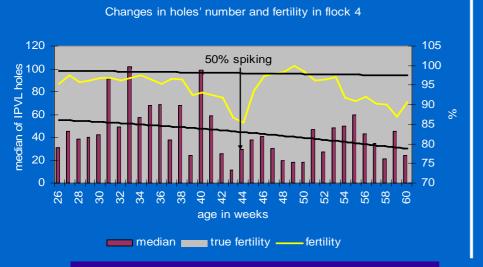
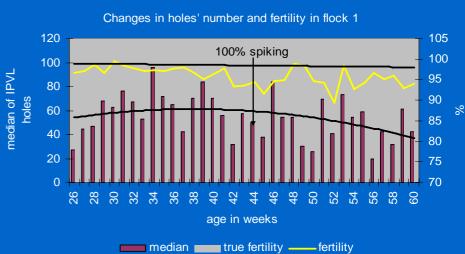


Image of *fertile* germinal disc 200 x


Image of *infertile* germinal disc 200 x


(Liptói et al., 2004)

Results

Conclusion

• In the second half of reproduction cycle the candling fertility decreased in all flocks, while the true fertility has not decreased in such degree, which indicates the increase of the early embryo death in this period, mainly in the case of young cockerels

From the practical point of view:

- either the changes in sex ratios (increasing or maintenance of males' number)
- or the wide spread used practice of expensive and labor intensive spiking (even 50-100%)
- or the complete exchange of cockerels between flocks
 - could not improve significantly the fertility level in the second half of the reproduction cycle, therefore it seems to be absolutely useless
- The results support the ideas that for the shortened persistency of fertility in broiler breeders above the genetic, rearing and other managements' reasons rather the females than the males are responsible

Thank you for your attention!

